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Motion by Curvature in Generalized 
Cahn-Allen Models 
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The Cahn-Allen model for the motion of phase-antiphase boundaries is 
generalized to account for nonlinearities in the kinetic coefficient (relaxation 
velocity) and the coefficient of the gradient free energy. The resulting equation 
is 

e2u, = ~x (u ) (e : [ x (u ) ]  '~ V. { [h ' (u ) ]  ,/2 Vu} -f(u)) 

w h e r e f i s  bistable. Here u is an order parameter and x and ct are physical quan- 
tities associated with the system's free energy and relaxation speed, respectively. 
Grain boundaries, away from triple junctions, are modeled by solutions with 
internal layers when e,~ 1. The classical motion-by-curvature law for solution 
layers, well known when x and ~ are constant, is shown by formal asymptotic 
analysis to be unchanged in form under this generalization, the only difference 
being in the value of the coefficient entering into the relation. The analysis is 
extended to the case when the relaxation time for the process vanishes for a set 
of values of u. Then a is infinite for those values. 

KEY W O R D S :  Grain boundary; internal layers; motion by curvature; 
Cahn-Allen model; Allen-Cahn model; Ginzburg-Landau functional. 

1. INTRODUCTION 

The well-known bistable nonlinear diffusion equation (Cahn-Allen equa- 
tion) 

u,=~(t? VZu--f(u)) 

was proposed in refs. 1 and 3 as a model for the dynamics of a phase- 
antiphase boundary between two grains in a solid material. The function u 
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is an order parameter attaining its extreme values + 1 in the crystalline 
states: + 1 for one grain and - 1  for the other. Thus the quantity u 2 is a 
measure of the order of the material, and the maximum disorder occurs 
where u = 0. The Cahn-Allen equation represents a gradient flow for the 
free energy functional 

d~[u] = fa (�89 [Vul 2 + F ( u ) )  d x  (1) 

where F ' ( u ) = f ( u )  and g2 is the spatial domain occupied by the material 
under consideration. Therefore in a sense which can be made more 
precise, 19~ this evolution is in the particular "direction" in the function 
space ,,~2(~e'~) which will cause g to decrease in the most "efficient" manner. 

- is of course a measure of the amount by which the The coefficient ~K 
system penalizes gradients in u. The other constant, o% is a relaxation 
parameter related to the speed at which the system is driven toward an 
equilibrium configuration. Those configurations minimize g. 

The most important property of the Cahn-Allen equation is the 
motion-by-curvature law. ~'3) When ~ is very small and 0~ very large with 
~ =  O(1), there exist solutions with internal layers of thickness O(yl/2). 
Considered as a surface in 3-space, such a layer represents a grain bound- 
ary. It moves with normal velocity v given approximately by 

v = - ~ g K  (2) 

where K is the mean curvature of the layer. The existence of such solutions 
was proved in refs. 11, 12, and 6. Connections between the Cahn-Allen 
equation and global generalized solutions (2) were established in refs. 7 
and 14. 

Consideration has until now been restricted to parameters g and 
which are constant. It is expected, however, that they can depend 
significantly on the order parameter. In particular, the free energy penalty 
g(u) for gradients should be least, and the relaxation parameter 0~(u) 
greatest, where the atoms are freest to move. This occurs where the 
material is ordered least, i.e., when u = 0. There is some interest, therefore, 
in looking at the Cahn-Allen model corrected to take these nonlinearities 
into account. Interfacial theories of a different but related type based on 
increased mobility within the interface are reviewed in ref. 5. 

To incorporate the required order of magnitude properties for 0~(u) 
and ~(u), we represent 

g(u )=e2~: (u ) ,  Maxu K(u) = 1, 0 < e ~ l  

0~(u) = e-2~(u) 
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and rescale the time variable t so that 

Min, ~(u) = 1 

The corresponding gradient flow for the functional r given by ( 1 ) with 
these notational changes and x and ct allowed to depend on u is 

6~ e2u,=-~(u) ~---~ 

where 6~/6u is the ,~2 functional derivative of ~. A straightforward 
calculation results in the evolution equation 

eZu, = oc(u)[ Ez( V. ~(u) Vu - �89 IVul 2) - f ( u ) ]  

which we shall write in the form 

e~u, = oc(u)(d[ ~:(u)] '/~ V. { [~:(u)] '/~ Vu} - f ( u ) )  (3) 

Our object here is to investigate the effect of the u dependence of ct and 
on the motion-by-curvature law. 

In case a and x are constant, we may of course replace the product 0~g 
in (2) by 0tx. In this case, the law (2) does not depend on the function f. 
We find that the effect of u-dependent coefficients is seen only through 
modification of that coefficient. In fact, it is to be replaced by a certain 
weighted harmonic average of the product a(u)x(u).  The weight function 
is [F(u) ]  i/2, and so we gain dependence of (2) on the function f 

Along with the law of motion, formal analysis supplies the micro- 
profile of the interface, i.e., the shape of the function u in the layer where 
it changes rapidly from - 1  on one side to 1 on the other. 

Problems featuring enhanced mobility or conductivity within an inter- 
face have been studied in ref. 4 (for the Cahn-Hilliard equation) and ref. 10 
(for phase field models), as well as in ref. 5. Those results are quite different 
from ours. 

2. THE MODIFIED MOTION-BY-CURVATURE LAW: 
THE CASE. o(u) AND K(U) BOUNDED AWAY FROM 0 

We consider the modified Cahn-Allen equation (3) for an "order 
parameter" u(x, t), x ~ R 3. The function f (u)  is of bistable type (see Fig. 1) 



176 Fife 

-] o ~ _  

Fig. 1. A typical function f ( u ) .  

with two "stable" zeros at u = _ 1 and an "unstable" zero which for sim- 
plicity will be taken to be u = 0 .  The functions ~(u) and K(u) are positive. 
The function f satisfies 

fl f(u) du=O (4) 
- 1  

For  e small (and positive) we construct layered solutions of (3) with 
a thin layer of thickness O(e) separating, at each instant of  time t, all the 
remainder of  space into two regions ~ + ,  where u remains in a small 
neighborhood of  _+ l, respectively. 

For  convenience in the asymptotic analysis, we shall use the alternate 
variable 

w=g(u)-- [x(s)]l/2 ds (5) 

In this section, it is assumed that the functions ~ and x are positive, 
bounded, bounded away from 0, and smooth. Thus g is invertible. 
Moreover,  (3) becomes 

where 

e2r(w) w, =e2 V Z w - h ( w )  

h(w) -f(g-I(W) )/[ K(g-I(W)) ] 1/2 

1 
r(w) - o~(g_l(w)) K(g_l(w)) 

Notice that the two stable zeros of  h are now 

(6) 

(7) 
(8) 

w =  w+ - g ( _ + l )  (9) 

A standard asymptotic interface analysis ~z~3'g'l~ can now be carried 
out for layered families of solutions w(x, t; e) of (6). 
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We summarize that procedure. Let F ( t ; e ) = { x :  w(x , t ;e )=O};  this 
curve is defined to be the location of the interface. A coordinate system 
r(x, t;e), s(x, t;e) is erected in a neighborhood of F(t;e)  such that r 
represents the signed distance from x to F (r > 0 in ~+ ) and when x ~ F, 
s is an arc-length parameter along F. Let z be the stretched normal coor- 
dinate 

r 
z = -  (10) 

g 

Then if we define the inner variable W(:, s, t; e)= w(x, t; e) and (for 
r = 0 )  the normal velocity v ( s , t ; e ) = - r , ( x ,  t;e) in the direction on ~+  
and assume that W depends in a regular manner on ~, we obtain the order 
relation 

W= - h (W)  + err(W) IV: + eKW. = O(e 2) ( 11 ) 

W(O,s, t; e)=O (12) 

where K(s, t; ~) is the mean curvature of F(t; e). The curvature term in (11 ) 
results from the fact that for x E F ,  VZr(x, t; O)=K(s(x), t ; 0 ) ;  the sign is 
determined by r being positive in ~+ .  

The formal inner approximation consists in representing 

W(z, s, t; e) = Wo(z, s, t) + t Wl(z, s, t) + ezwz + ... (13) 

where the W i are bounded. 
There is also a corresponding formal outer expansion, but it trivializes 

to W o - + l  i n ~ + , w i t h  w k - O f o r a l l k > O .  
Substituting (13) into (11) and (12) and applying a requirement that 

W match with the outer solution, we obtain 

Wo.._ - h ( W o )  = 0 (14a) 

Wo(+Oo, s , t ) = w + ,  Wo(O,s,t)=O (14b) 

LW~ + vr(Wo) Wo_+KWo.=O (15) 

where L is the self-adjoint linear operator given by 

L W =  W " - h ' ( W o ( z ) )  W (16) 

(Here we have anticipated that Wo will be independent of s and t.) 
It is well known that (14) has a solution, which we will denote by 

Wo(z) = qJ(z), if and only if 

~ "'§ h(w) dw = 0 
v _  
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But by changing the variable of integration to u = g - t (w) ,  it is readily seen 
that this condition is guaranteed by (4). The solution ~k(z) is unique, so 
does not depend on s or t. It is also known to be monotone. 

Setting Wo = ~k in (15), multiplying it by ff'(z), integrating with respect 
to z from - ~  to co, and using the fact that 

L~k' = 0  

we obtain the solvability condition for (15): 

r(O(z))(O'(z))2dz+K (O'(z))2 dz = 0 (17) 

From the equation 

we know that 

where 

~0"-h(~k) = 0 (18) 

~#'(z) = [2H(~#)] 1/2 (19) 

H(~ )= f,~_ h(s) ds 

[Note  that the bistability of f and (4) imply that H(~b)>0, 
r  

Changing the variable of integration in (17) from z to s =  r we 
obtain from (19) 

v = - a K  (20) 

where 

j",,+_ ds 
O ' - -  

j'",+_ m 

But we may again change variables to simplify lhis expression for a. 
Set s =g(#) and recall 

Then 

f~ f(u) du F(~) = -, 

'-'<'/={,i i<.-'<w)> 
_ [ K ( g - - I ( w ) ) ] I / I  
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and 

~'_, [ r ( ~ ) ]  , /z d~  
a -  (21) 

~l_ 1 [ 1/a(~) K(~)] [F(~)]  1/2 d~ 

which is a harmonic weighted average of ~,K. 
This parameter a incorporates the effect on the motion-by-curvature 

law of the functions a and K. It should be borne in mind that (20) is only 
the dominant-order law of motion; it is formally correct up to terms of 
order e. 

The case normally considered is that when 0t and K are constant; then 
clearly a = or, and (20) becomes 

V = --  o:KK 

It is noteworthy that the motion-by-curvature law in this case does not 
depend on the function f ( u ) .  This important observation was made in 
refs. 1 and 3. 

In general, (21) shows a to be a harmonic weighted average of 
ct(u)K(u), the weight function being proportional to IF(u)]  1/2, hence 
depending on the function f,  but on nothing else. As a consequence, we 
conclude that 

Min(~x(u) K(u)) ~< o ~ Max((z(u) K(U)) 

As we have seen, the lowest-order interfacial profile is given by 

Wo(z) = qJ(=) 

Reverting to the original order parameter u and denoting the interracial 
profile in that variable by U(=), we then obtain 

Uo(=) = g - I ( W o ( z ) )  = g - ~ ( ~ O ( z ) )  (22) 

This, again, is a monotone profile leading from - l  = U0( -oo )  to 
1 = Uo( oO) .  

3. M E C H A N I S M S  FOR S L O W I N G  I N T E R F A C E S  

Several conclusions can be drawn from (21). Suppose, for example, 
that in some u subinterval I c ( -  1, 1), we have 

~(u) ~(u) <~ 
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for some small number ti. Then from (21), we have 

i '-,  [ F(~)]'/2 d~ 
a < ti =tlC 

i /  [F(~)] 1/2 d~ 

with c depending only on F and I. It follows that the velocity coefficient in 
the motion-by-curvature law can be made as small as desired by fixing ~ and 
taking K to be small enough in any fixed subinterval I. 

The interpretation is that making the penalty for gradients small in 
some u interval, for example, near the value u = 0, has the effect of slowing 
the interracial motion. This is because the propagation mechanism relies in 
part on the gradient penalty, which forces an interaction between neigh- 
boring points in space. 

Similarly, if we relax the requirement that Min,  a(u) = I and allow 
to be very small on some interval J, slowing down occurs for quite a dif- 
ferent reason. Propagation, in fact, also depends on the force driving u 
toward the states -t-l, and this force, being proportional to a, is small on 
J. In both examples, the smallness of K or a is not assumed for all u, but 
only on a subinterval. 

4. I N F I N I T E  R E L A X A T I O N  SPEED 

It is easy to extend the foregoing analysis to cases when the relaxation 
speed is infinite for some values of u. Suppose, for example, that this is so 
for u in a closed set /. In some applications, it may indeed be useful to 
assume this for an interval containing the value u = 0 .  For u in L then, (3) 
becomes an elliptic equation 

 2 v.l vu -flu/=o 
whose solutions must extend continuously to those of the parabolic 
equation (3), valid outside L A layered solution of this elliptic-parabolic 
equation can still be constructed by formal analysis, and again the velocity 
of its layer follows the usual motion-by-curvature law. 

We define the relaxation time fl(u)= 1/0c(u), so that f l=  0 exactly o n / .  
Then (6) holds with 

r(w) =fl (g- ' (w) )  
x(g-~(w)) 

which also vanishes on L 
The asymptotics in Section 2 remains valid. In fact, the function ~,(z) 

is the same as before, and (20) holds with 
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~'_, [F(~)] '/2 d~ 
o -  > 0  

~r [~(~)/x(~) ] [  F(~) ] t/2 d~ 

where I '  is the complement of L 
Although we have seen in the last section that the velocity can be 

made arbitrarily small by making ~x small on a fixed proper subinterval of 
( - 1 ,  1), it cannot be made arbitrarily large by making cr large on such an 
interval L However, it can by increasing the size of L 
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